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1 Introduction

This study is motivated by the need for better accuracy in atmospheric turbulence pre-
dictions for the upper troposphere and lower stratosphere based on the Penn State/NCAR
Mesoscale Model Generation 5 (MM5) (Dudhia 1993; Grell et al. 1994). Although tur-
bulence itself is not captured by the MM5, MM5-predicted atmospheric profiles of winds
and temperatures are used as input into a turbulence parameterization, such as the Dewan
model (Dewan et al. 1993), to calculate turbulence along paths on the order of 1000 km
long, providing a feasible method for real-time turbulence predictions for use in aviation and
military applications.

Field measurements of turbulence and other atmospheric quantities were made to assess
the accuracy of such predictions and to compare them to turbulence parameterizations based
on observed profiles (Ruggiero et al. 2004). This revealed cases where MM5-based predictions
failed because of MM5 inaccuracies, characterized by vertical profiles in which high-resolution
features were lacking or severely smoothed. This prompted the current assessment of impacts
on MM5 accuracy as it pertains to atmospheric turbulence calculations. Gravity waves are
of interest in this regard because gravity waves can create shear instabilities that produce
turbulence.

Gravity waves are the focus of this study due to their association with turbulence. The
MM5 captures gravity waves, but the model was developed as a weather-forecasting tool and
its simulations are subject to numerical damping that was not optimized for gravity-wave
forecasting. In the context of turbulence forecasting, damping of gravity waves is of interest,
especially in consideration of the smoothed MM5 profiles in cases of inaccurate turbulence
predictions.

Related research by Leutbecher and Volkert (2000) compared several MM5 simulations to
an observed gravity-wave event induced by flow over a mountain. This showed how variations
in horizontal grid spacing and surface friction values were important in determining the
accuracy of the simulated wave amplitude. Horizontal grid spacing affected accuracy because
it impacted the resolution of the mountain and the amount of artificial dissipation, which is
targeted to control numerical instability of waves that are small relative to grid spacing. A
result of the study was an optimal pairing of surface friction value and horizontal resolution
(the finest) for the given wave event.

The present study aims to separate MM5 wave propagation by the model's dynamical
core from other model functions and to generalize results to a range of gravity waves. The
dynamical core refers to that part of the model that is adiabatic and invisid and thus mainly
pertains to advection of conserved properties. That is, propagation is modeled without the
parameterizations typically used to represent subgrid scale influences, and boundary layer
processes so that the effects of the dynamical core are isolated. In our idealized simulation,
conditions at one boundary correspond to gravity waves entering the model domain. Then
calculated values along the center of the propagating gravity wave are used to evaluate how
the amplitude of the wave evolves. The problem simulated has an analytical solution so the
observed loss in wave amplitude can be assessed in terms of theoretical results. Further to



generalize the simulation results we conduct a numerical analysis of the linear behavior of
the discretized model equations.

The problem simulated is the two-dimensional gravity-wave problem characterized by the
X-shaped wave pattern, known as St. Andrew's cross, shown in the photographs by Mow-
bray and Rarity (1967). A density-stratified fluid with constant Brunt Vdisdlld frequency,
initially at rest, is disturbed by an oscillator, which results in four straight gravity-wave
beams propagating from the disturbance location and forming an X pattern. The nonlinear
problem is solved analytically by Tabaei and Akylas (2003) for a two-dimensional, viscous,
Boussinesq fluid. They show that after initial transients died out, their solution corresponds
to the solution of Thomas and Stevenson (1972) who validate the solution with experimental
measurements. It turns out that in the inviscid case, the nonlinear and linear solutions are
identical and prescribe a uniform fluid speed along each beam center. Tabaei and Akylas
showed how the presence of viscosity causes the beam-center speed to decrease as the beam
propagates away from the disturbance.

For the MM5 simulation of St. Andrew's cross, moisture, rotation, and other effects that
are important in the real atmosphere are eliminated, making model conditions close to those
of the Tabaei and Akylas (2003) solution. The compressibility in the model must be retained
and therefore, the theoretical Boussinesq results for the beam-center speed are adapted to a
compressible fluid for comparison to model results. Although both the model and theory are
nonlinear, small disturbances are used here to generate a linear response for consistency with
numerical analysis described later. Results from eight model runs, reflecting different grid
sizes and wavelengths, are compared to the theoretical prediction for loss in beam amplitude.
This shows MM5 losses can be greater or less than predictions, depending on grid and wave
parameters.

A linear analysis is used explore the sensitivity of the MM5's numerical dissipation to
changes in grid and wave parameters. It is noted that the damping in the MM5 is strictly
numerical, as real viscosity is not explicitly simulated by the dynamical core of the model.
The MM5 is a fully compressible, nonhydrostatic, three-dimensional model. Variables are
updated using a combination of explicit time stepping with artificial dissipation for hori-
zontal momentum equations and implicit time stepping for vertical momentum and entropy
equations. The terms in all equations are partitioned into fast-changing terms, which are
updated on small time steps, and slowly-changing terms, which are updated on large time
steps.

Numerical experiments result in observed amplitude changes that vary with grid and wave
parameters. The observed values show how numerical dissipation in the MM5 dynamical
core compares to the dissipation that would be present with molecular viscosity. Numerical
dissipation is decreased with finer wave resolution in either the horizontal or vertical, with
greater sensitivity to horizontal resolution. This is supported by both numerical experiments
and numerical analysis. Numerical analysis is used to calculate amplitudes for a range of
horizontal and vertical parameters, showing these sensitivities.
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2 Theory

The relevant equations and their analytical solution are discussed here and used in the
next section where the numerical method is analyzed. The two-dimensional conservation
equations of continuity, momentum, and entropy are taken for a compressible, inviscid,
adiabatic, ideal gas and linearized about a motionless background state with constant Brunt
VWis!ldi frequency and temperature. Although approximate solutions adequately describe
gravity waves for many purposes, the compressible case is most relevant since compressibility
is an essential feature of the MM5 numerical method. This problem leads to a gravity-wave
solution and the associated dispersion relation. When the problem is further simplified
using the Boussinesq approximation, a gravity-wave beam solution is obtained. It is shown.
by Tabaei and Akylas that the Boussinesq solution for the linearized problem is the same as
that for the nonlinear problem. Furthermore, they give the solution for the Boussinesq case
with viscosity. All of these solutions are considered here.

The perfect gas law,

j: 1 Rt (1)

where >, f3, and !T are pressure, density, and temperature, respectively, and where R is the
gas constant for air, is linearized using the sum of a background state quantity, indicated by
the subscript 0, and a perturbation quantity,

io=po+p+'", j=po+p+"". and t=T 0 +T+.... (2)

Requiring that Equation (1) holds for the background quantities and ignoring terms of second
order leads to the linearized perfect gas equations,

p = poTR + pToR. (3)

Since it is already linear the hydrostatic relationship for the perturbation quantities

ap -_9(4)az

has the same form as for the full and background variables.
The background state sound speed, co, and Brunt Vdisdlla. frequency, N, are constants

in this treatment, given by

co -yRTo, and N-- g 1, (5)

where -y is the ratio of the specific heat of dry air at constant pressure to the specific heat
of dry air at constant volume and g is the gravitational constant.

In preparation for the numerical analysis, the governing equations are shown in the form
used in the MM5 and without the added damping terms from the MM5. The momentum,
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pressure, and temperature equations are

-- + - 0, (6)at Po a~x

aw +- g , (7)
at Po az PO

ap + POa - po- z 0 0, (8)
at 0

aT 1 ap g (9)at POP at %

j= au + 0- (10)

Equations (6) - (10) match those shown in Grell et al. (1994, referred to hereafter as
G94), when the MM5 mapping factor is m = 1, the reference pressure p* is constant (as it
would be for flat terrain), and using z as a vertical coordinate. Specifically, Equations (6) -
(9) above can be obtained respectively from Equations (2.2.1) or (2.5.1.1), Equations (2.2.3)
or (2.5.1.3), Equation (2.2.4), and Equation (2.2.5) in G94.

Equations (6) - (10) are equivalent to those presented in Lighthill (1978) for the flow of an
inviscid, linearized, compressible, constant N fluid. The momentum equations above, Equa-
tions (6) and (7), are both represented by the (vector) Equation (16) in Lighthill's Section
4.1. The pressure equation, Equation (8) above, can be obtained by combining Lighthill's
equation for a reversible process, or Equation (33) in Section 4.1, with the continuity equa-
tion, or Equation (30) from Section 4.1. The temperature equation, Equation (9) above, can
be derived from Equation (33) in Lighthill Section 4.1, along with the linearized perfect gas
law, the hydrostatic relation, and the relations between constants in Equation (5). Thus,
the solution from Lighthill applies here.

The solution to Equations (6) - (10) takes the form

p=R7?exp(io), pou=Uexp(iO), pow =VWexp(io), p=Pexp(io), (11)

where
= ký,x + kzz - wt, (12)

w is the temporal frequency, and k. and k, are the spatial frequencies in the x- and z-
dimensions, respectively. This leads to the dispersion relation

2 k- + kk - ikZ(- ;)g] w+ kN 0, (13)

as shown in Lighthill (1978). Provided that the background density varies slowly over the
length of a gravity wave, the approximate dispersion relation is

2 N 2A -

bi= (14)
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which coincides with the Boussinesq dispersion relation. The wave-dependent coefficients in
(11) are related by

P w P N 2 - w 2  7R iw ik. P
Sk~ VVW w (ig ý- kj)' g- (15)

The nonlinear, two-dimensional, Boussinesq beam problem was solved by Tabaei and
Akylas (2003) for a stably stratified -fluid with background density, Po, that varies exponen-
tially with height. The gravity-wave dispersion relation, which coincides with the linear case,
is

(w/N)2 = sin 2 0, (16)

where 0, the wave propagation angle in the x-z plane, is defined by

(kx, k,) = K(sin 0, - cos 0). (17)

Wave groups move with the group velocity given by

N cos 0
Cg =- K (cos 0, sin 0). (18)

Provided
k_ > P -P1, (19)

PO
these results are a good approximation to the linear, compressible solution, which is presented
later and can be found in Lighthill (1978).

Along the center of a beam, the fluid speed is constant for the inviscid, Boussinesq case.
Tabaei and Akylas (2003) showed that when viscosity is accounted for, beam-center speed,
V, away from the disturbance decays according to

V 1 10l2/3-7 (20)

where ý is the beam-following coordinate,

S= r cos 0 + z sin 0. (21)

The beam amplitude prediction is reinterpreted here for a compressible fluid, for consistency
with MM5 assumptions. In a compressible fluid, the factor of f constitutes the leading
correction to Boussinesq results (Lighthill 1978). Therefore, the beam amplitude in the
compressible, viscous case used here is

1
V• •oc 1 (22)

1612/3

This amplitude prediction is used to gauge whether MM5 beam amplitudes are diminished
by MM5 damping more or less than they would be by molecular viscosity.
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3 Numerical Analysis

To examine how damping of gravity waves in MM5 varies with grid and wave parameters,
the discrete forms of (6) - (9) are analyzed using the MM5 numerical scheme. Many of the
techniques used here are shown in Durran (1999). A result is a numerical dispersion relation
from which the wave frequency and the wave amplification factor are found.

The MM5 numerical scheme is based on a form of Equations (6) - (10) with added
damping and averaging to accommodate the staggered grid. The equations are rewritten
with these features and using R = cp - c,, cy cl/c,, and c2 = 'Ypo/po. The result, after
some rearrangment, is

au & 6'
- +c CO a D (u), (23)

at ox \pocoo ax

az + Kcoca ) + cg k.poc(- - c ) (cpT -+ D (w), (24)

0-, P ) - -w 0O (25)

__) - __- -k D (-L) +Dc T) (26)

where the D terms are fourth order diffusion terms, the a term is divergence damping, and
the overbar indicates vertical averaging. The damping terms are used in MM5 for numerical
stability and do not reflect a physical process.

The vertical coordinate, z, used here differs from the pressure-based coordinate used in
the MM5, since use of the MM5 coordinate would unnecessarily complicate the analysis. For
the given base state the results would not change since pressure levels and z levels coincide.
In the MM5 simulations the pressure levels are chosen to correspond to equal increments in
Z.

The MM5 equations, approximated by the linearized equations in (23) - (26) with (10),
are discretized with centered differences in space. Note in what follows that the MM5
staggers the grids of the different variables. In the horizontal domain the Arakawa D grid
is used in which the thermodynamical variables (temperature and moisture) and vertical
velocity are defined at the full grid points (with integer indices) and the horizontal wind
components are defined at the half grid points, i.e., at the corners of the grid boxes centered
on the full grid points. In the vertical, vertical velocity is defined at the full grid points and
all other variables are defined at the half grid points. Therefore, the first derivatives of a
variable, v, accounting for grid staggering, are approximated in the MM5 by

av 1Vj+1/2 - Vy.1/2 auIVk12-V1/ax Xj+1/2 - Xj-1/2 and v Z Ok+1/2 - vk-l/2 (27)OZ ZjI/2 - Xj~l2 •Z Zk+1/2 -- Zk1l/2'

and the vertical average is
Vk+1/2 + Vk-1/2 (28)

2
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For a wave mode represented by

v - V exp (ikx + ikz) exp (-iwt) (29)

and using Ax = Xj+1/2 - Xj-1/2 and Az 4+1/2 - Zk-1/2, the approximate derivatives and
the vertical average can be written,

av i sin kxAx/2
ax9 Ax/2 v, (30)

av i sin kAz/2
- - Az/.2 v, (31)

ýU = azv = cos kAz/2v. (32)

An artificial fourth order diffusion is included in the MM5 to selectively dissipate the
smallest scale waves. Otherwise, because of aliasing, significant energy would accumulate
in these scales. The fourth order diffusion terms are defined so that D(v) approximates
D4a0v/ax4, with D4 a constant dependent on grid pardmeters. This approximation is ac-
complished by

D(v) = D4 vj+2 - 4v.+l + 6v. - 4vjl - Vj-2 (33)Ax4

D4 .0 03 Ax 4  (34)

where the D 4 value is approximated using Section 5.1 in G94, recognizing that the MM5
coefficient called KH is dominated by the KHO contribution for gravity waves and AT is the
so-called small time step. Using the wave mode given above, the fourth order diffusion term
is

D(v) = Dv- .012 (cos kxAx- 1)2 v. (35)AT

Discretizing the spatial derivatives and using the above notation for averages, Equations
(23) - (26) and (10) are written in differential-difference form as

au _

"-- +coax o - exa.,5 = Dxu, (36)

S+ Co (- + p ) - ( ) ( p + D xw , (37)

+ C = 0, (38)

a (aT-) a ( _gW - _ P+ DXcpT(39)at- =O at c CO P0oCo co

where 6 is now interpreted in terms of the difference notation so

j = a.• + a=. (40)
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The above equations are next subject to the time differencing for the time derivatives,
and time-level assignments for all variables. In summary, the MM5 scheme partitions terms
in the momentum and pressure equations into fast-changing, or acoustic, terms and slowly
changing terms. The fast-changing terms are updated on small time steps, AT, while the
slowly-changing terms are updated on large time steps, 2At. In addition, some of the slowly-
changing terms are updated at times t - At, t + At, etc., while others are updated at times,
t, t + 2At. So at any given time step, multiple time levels must be represented. The scheme
is described in more detail below and used to rewrite the differential-difference equations as
difference-only equations. This combination of split-explicit and odd/even centered (or "leap
frog") time steps, along with a time filter to keep the odd and even solutions from diverging,
is used in MM5 to simultaneously optimize the efficiency and accuracy of the model.

The fast-changing terms in the MM5 appear on the left hand side of (36) - (38) and slowly-
changing terms appear on the right hand side. The slowly-changing terms in the vertical
momentum equation (37) are individually susceptible to acoustic oscillations, but their sum
is equivalent to the slowly-varying potential temperature term, pog@/Eo, where 8 0 and G are
the leading terms in the expanded potential temperature and 0o = po/(poR)(p 8/po)( '-1/7),
with a reference pressure p8.

The acoustic terms, which appear on the left hand side of (36) - (38), are updated at
every small time step, AT, while the other terms are updated on large, "leap frog" (i.e.,
centered) time steps of size 2At, with 4AT = 2At, typically. The small time steps involve
stepping forward in time, so that for u for example,

au 'U(T-+-AT) - U(T) (1-- (41)i- AT

and likewise for w and p/(poco). In MM5 the u equation is stepped forward explicitly and
then the updated u values are used in the w and p/(poco) equations. Equations (37) and
(38) are made implicit in the small time steps by using time-averaged values for pressure
and vertical velocity. As described in Section 2.5.1 in G94, occurences of p/(poco) among
the fast-changing terms in the w equation, or on the right hand side of Equation (37), are
replaced by the time-averaged value

1+/3 P (T AT) + p (T), (42)
2 poco 2 poco

where 0.2 < /3 < 0.4. Similarly, occurences of w on the right hand side of Equation (38) are
replaced by the analogous time averaged value of w. For analysis purposes the median value
3= 0.3 is adopted.

The temperature is updated on leap frog steps, which leap from t - At to t + At. The
nonacoustic terms, other than the fourth order diffusion terms, are evaluated at the large
time levels in between these leaps, or t, t + 2At, etc. The fourth order diffusion terms are
evaluated at t - At, t + At, etc. To write the difference equations, time-level superscripts
are used, with m and n superscripts representing small and large time steps, respectively.

8



The small-step difference in (41) is written

U(T + AT) - U(T) U-~+l ' rATA '(43)A -r A -r (43

while the large-step difference to approximate the time derivatives in Equation (39) use the
form,

PTn.l+1 _Tn-1
Co Co (44)

At

Starting from the step n - 1 = m, the first small time step gives the difference equations

um+l = uM (45)

+Ai- -®co ~ + QD(,%u- + aw-) + D.u-1

Wm+l = Wm-AT(CPZM)1 1 + (46)Cooa + / 2 poco 2 poco/

+AT&aAZ(&Xu-'+l + azwm)
+A•_g(-y- 1) z( cpTn Pn 7-)w'1+ Tlazc2T -- ) + ATDXWn- 1 ,

CO CO poco

p + - AToa&xum+l (47)

+A_(_co,9+ga+ ) 1+f m+l + 1

cpTn+l cpT
1-I pf+l n pn-I

- + (48)Co Co poco Poco
-At _ga-w pn- ,- + D, T•-

( Co poCo Co

Note that with four small steps for every leap frog step, every other m-based step coincides
with an n-based step, so that m = n - 1, m + 2 = n, and m + 4 = n + 1. The distinction
between m steps and n steps in Equations (45) - (48) is retained because equal values, such
as m and n - 1, for the step represented above, will not be equal in the subsequent small
step when m is updated to m + 1 and n - 1 is held constant. Note Equations (45) - (48) are
valid for any number of small time steps per big time step. These equations will be used to
develop a set of equations for the specific case of four small time steps for a leap frog step.

Equations (46) and (47) are rearranged to eliminate occurences of m + 1 level quantities
on the right hand side. Specifically, Equations (46) and (47) are solved simultaneously to
eliminate wtm+l and pm+l/(poco) and Equation (45) is used to replace occurences of u-m+l.
Rewriting the u equation along with the result of the rearranged w and p/(poco) equations

9



gives

__ A-- +j7 m + A + A+ A-l T -1+ (49)
1p Po CuM+l _ Au M+Aw w +A -ppo n co (0

+ BUm Bm + Bmp + B +BJ (50)
PoCo PoCo poco__ n-i n-I + Bn-i n-1

p m+l mW +i C' npn
p_ = CnU± + C w _+ C +C_+ ±CT (51)
poco PoCo

+C•u-lU-I + C7-lWn-1.

Here

Au - - (52)

Am = d , a9,(53)

Am =-.5=, Au /, (54)

B +1 1+ (&2 +8z) ( [0-)-m -- 2 (55)

S: (a. + 5)(z ) (I + 5 )26()5)

w

Bsr 2 (58)
Bwm+l

BB n (7- 1)d (59)
TBm+l,

Bpn b ± +I) -± (60)

_ ( + &) (, ) 1BB+n 2 (61)

BnlO



and

C__ = -9 + B-8 (62)

c7 = (a" - )o a+a +X,, (63)

+6 . 1 + ,8 -, (64)

c, = (az-a)+ 2 B , (65)

(.- + B1 (66),C•= (5•-8.•)- pB , (66)

(.- .1+ ,B, (67

c =,-1 (d - )-- Bn-1, (68)

with the dimensionless quantities,

5, gAr -•

= -- az, 8z = cOAxT', 5z = c0Ar&,, and &x = - (69)co A -r do

defined for convenience.
The discrete system is appended with the following equation,

cTn - cTnT+l C--,(0

Co 2c0  2c0  
(70)

which simply averages temperature values. Note that all the coefficients needed to describe
the linearized MM5 equations are ultimately only dependent on the wave numbers kz and
k,; the "delta's" Ax, Az, At, and At; the physical constants g, cp, and -y; the basic state
parameters co and po; and the pressure term averaging parameter 11.

Equations (45) - (48) along with Equations (49) - (70) provide the rules for discrete
time stepping for any number of small time steps per large time step. To continue the
analysis we must now specify how many small time steps correspond to a leap frog time
step. The standard MM5 always defaults to four small time steps per leap frog step, and
this arrangement is used in our simulation experiments. Thus, Equations (49) - (51) are
written for m + 2, m + 3, and m + 4, by advancing the m-based variables, while leaving
the n-based variables at the levels specified. For example, using Equation (50) to write the
expression for wm+ 2 gives

W0+2 0+^ 0 j~m 0+1 0m+1 B n p

m+2 `, . ++ +B- + +BT, 7)

W poco poco (71)

+Bu + B'n-10 +1 n-l n-1.



Note that the coefficients B' does not actually depend on u or m. The super- and sub-
scripts were defined to match the variable ut that B' multiplies. This is true for all the A,
B, and C coefficients.

Writing Equations (49) - (51) for the four small time steps results in twelve equations,
which are combined to reduce the number of equations for u, w, and p/(poco) to six. Before
combining equations, the levels m, m + 2, and m + 4 are renamed using the coinciding n-
based levels, n - 1, n, and n + 1, respectively. The remaining m-based levels, m + 1 and
m + 3, are eliminated using substitution. For example, in the equation for um+2 , now called
un, occurences of um-+ and pm+l/(poco) are replaced using the equations for those variables.

The six equations for u, w, and p/(poco) are combined with the two equations for cpT/co,
namely Equations (48) and (70), for a system of eight linear equations with eight unknowns,
containing stricly n-based time levels. To write these equations compactly, let

V• U (n Wn P' CPT' T, (72)

so the eight equations are

Vy7+l = L11 k' + L12 2-1 , (73)

on = L21 on + L229ý-b1 . (74)

Note that Equation (74) is an implicit equation. Here the elements of Ll, are

A• C• A• 2C• •)+A F+B
B•(Am2 + Bm) + B•Am (BA [) 2 + BAW + BA((Bm + BC•m B+±B'2C + +B

AC Bc2C- Cn+ c 7) +
Bum(Am + Cm) + CmAm + C(B•n) + Bm Am + Cpm(Bm +, CwBn+BpC}(C+Bn

PmB BP) B') + CF(CF +Bn(B- + 1)

0 0 0 2

the elements of L 12 are

A•-I(Am• + 1) + AraBn-1 + AmCn-I 0 0
nZk -IZ n -1 V- l - -

Ww-Bu' +AmCu 1Ww "n-14 An-1-

B-'(BR + 1) + B-(B ± + 1) + 0 0
BMn-

1 + BRmCn-
1 Bm CnU-1

Bu "-u -- -p -c:n-l(cp + 1) + CnlCM+ i) + o 0
Cum A- + CmBn- 1 C , Bn-1

0 0 0 -1

the elements of L2 1 are
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AoB; + AP-Cp A- BT + A- CT-
0 0 BrBp+Bp±Cp±+Bn BBTn+B• C+BT

00Cm Bn +Cm Cn +Cn Cm B n+ mCn+CnoC0 GB• +C C•+C[ C• BT+CgC•=±C'

.5(CuAm + .5(CuA- + .5(CmA'• + .5(C B,+Cm CTn+
CB7 + C•Cy) CB + CaC - C(B; + BC) + C•)

and the elements of L22 are

An-l(A-L + 1) + Am (Am + Bwm + AmAp + AmBm + 0
(Am) 2 + Am (Bum + Bn• ) + Am (Cw, + ApmC

B.') + Am (Cu + Cr1 )
Cn-1)

Bm(A, + A- )1) + BuA- + Bw7' + BuA- +BwmBp + 0
Bwm(B+Bun-)+ Bwm (BB, + )Cm-
B(Cum + C-1) + Bm (Cw + C-1)

Now the numerical scheme is reduced into the steps in Equations (73) and (74), which
can be thought of as a sequence of odd and even steps. To distinguish these steps, the levels
are renamed so that

.2n = L21 0 2 + L220 2n-l, (75)

+1 = Lj 2 + ±L 12 ) 2n-1-. (76)

These equations completely describe the numerical scheme, excluding the time filter.
With the Asselin (1972) time filter, the leap frog step in Equation (76) is changed to

,o2n+l = Ln 2 + L12,'0
2 -1, (77)

where the time filter, indicated by the overbar, is given by

02n = (1 - 2V) 2n + ,V)2 n+l + V¢2-1, (78)

with v = 0.1 as the MM5 filter constant. Combining Equations (75) and (77) gives
o2n+1 = LA)An-•1 + L1202 n-1, (79)

where, in terms of the identity matrix I,

A = (I - L21)-L 22 , (80)

so the scheme is completely described by (79) with the filter defined by (78).
In order to obtain a single equation for the scheme, in which filtered variables are rep-

resented in terms of unfiltered variables, the filter is applied to both sides of Equation (75),
which when solved gives

02 = A0n2 -', (81)
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using the property that A/ = Atk. The filter in Equation (78) can now be rewritten as

A 2--l = (1 - 2j,)AV)2.-I + V) 2 n+l + .02n-1. (82)

Solving for y2n-ll this gives

02n- (A- 1' [(I - 2')A '2n-1 + ,)l2n+l] . (83)

This is used to eliminate the filtered variable in Equation (79) giving the final linear evolution
equation

V2n+1 _A2n-1 (84)

where
A = [I - 1/L12 (A - t/)-1]-1 [Lz1 A + (1 - 2P)L 12 (A - I)-ZA] • (85)

Next, it is shown how this result is used to obtain the amplitude factor and the numerical
frequency. Assuming solutions of the form

02n+1 = 0o exp (ik.x + ikzz) exp (-iwt 2,+l), (86)

where 00 is the constant vector (Uo wO po/(poco) cpTo/co)T that we must determine.
Equation (84) can be written

0 = [A`-Iexp(-iw2At)1 boexp(i]xx+iikz)exp (-iw(t 2n - At)), (87)

o = [A4- IA]0 2n-1, (88)

using A = exp (-iw2At). Nontrivial solutions for 0y2 f-l exist for

det (A - IA) = 0, (89)

which leads to four eigenvalues (values for A), from which the appropriate value for the
gravity wave of interest is selected, as discussed below. Each eigenmode then simply evolves
according to

V)2n+1 = AVb2n-1, (90)

that describes the effect of the numerical scheme. The amplitude and frequency information
are contained in the real and imaginary parts of A, or in terms of frequency, they come from

A = exp (-i(w, + iwA)2At) = exp (-iw,2At) exp (wi2At). (91)

So over a leap frog step, the amplitude of the gravity wave of interest is adjusted by a factor
of

S= exp (wi2At) = Re(A) (92)

and the numerical frequency of the wave is

2At (93)
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(±,±) + (+,+) (+2-)
(±,±) - (-2-) (-2+)

(+,-) + (+,-) (+,+)
(±,-) - (-,+) (-,-)
(-2±) + (-2+) (-,-)

(-+ (+,-) (+,±)

( -,- (±,±) (+,-)

Table 1: Association between frequency sign and gravity wave travel direction. Here C - g
is the group velocity and Cp is the phase speed.

Solving Equation (89) leads to four eigenvalues, from which the one associated with an
upward-traveling gravity wave is selected. The selection is based on the magnitude and sign
of the frequency. Two eigenvalues lead to high frequencies, on the order .of 0.08 s-I which
imply oscillation periods on the order of 1.3 minutes. These frequencies are higher than
the Brunt Vaisaili frequency of O.012s-' and are therefore discarded as describing gravity
waves. The other two eigenvalues lead to frequencies on the order of 0.0008 s-i, which imply
oscillation periods on the order of 140 minutes, which are consistent with gravity waves.
This leaves two gravity wave eigenvalues, which are opposite in sign and nearly equal in
magnitude. These are the two beams of the cross.

The dispersion relation and group speed from the idealized case, given in Equations (16)
- (18), can be used as a guide to associating frequency sign with gravity wave direction
of travel. For example, if the wavenumber (lcx, k•) signs are (+,-) and the frequency (w)
is positive, then the group speed vector (Ce) has signs (+,+). The other combinations are
given in Table 1 for use in interpreting calculations in association with the numerical analysis
as described in the following sections.

Numerical dissipation is typically quantified in terms of the order r in A 1- - Cf,
where C is a constant, and f depends on grid and wave parameters (Strikwerda 1989). In
the current problem f is not readily determined and therefore the quantity D, which varies
like r In f, is used. The amplification factor is related to D) by

ln (I- Aa) = T= -+Ba, (94)

where Aa = A() Ba is a constant, and the subscript a refers to results based on analysis.
The constant Ba is combined with its counterpart for experimental dissipation as discussed
in Section 5.

15



z Z 7400 Pa (15,000 m)

."101325 Pa(1 n) l/

X X %

Disturbance Domain

amplitude

Figure 1: MM5 domain and boundary disturbance.

4 Numerical Experiment

The MM5 is implemented for an idealized atmosphere for eight sets of grid and wave
parameters. Simulations are in a single domain without moisture, Coriolis effects, a plan-
etary boundary layer, or tropopause. The terrain is uniform and the background state of
the atmosphere is given by an ideal gas in hydrostatic balance with no flow and a tempera-
ture profile of the standard atmosphere (Holton 1992), resulting in a nearly uniform Brunt
Vdisdld frequency of 0.012s-1. Such conditions should be steady, but because of boundary
conditions and the effects of descretization the specified state is not exactly steady. There-
fore a preliminary forecast is run with constant boundary conditions to allow the model to
make any small adjustments required to reach a steady state.

A two-dimensional disturbance, satisfying the gravity-wave solution in (11) - (15) is
introduced at one lateral boundary, approximately centered in the model vertical domain.
The disturbance has a vertical extent equal to one vertical wavelength, above and below
which the disturbance decays as shown in Figure 1. The other three lateral boundaries have
no-flow conditions. In order to simulate the two-dimensional problem in a three-dimensional
atmosphere, the disturbance is applied uniformly across the third dimension (the N-S or y
dimension in MM5 notation).

The resulting flow contains an upward-traveling beam and a downward-traveling beam,
forming the right half of St. Andrew's Cross. Once the beams have developed, cross sections
involving the N-S dimension are examined to confirm qualitatively that the flow is uniform
in the N-S dimension, indicating two-dimensional flow. Cross sections showing half of the
X-pattern are examined at several times to confirm that wave quantities, including wave
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Figure 2: Example of MM5 gravity-wave response as shown in a cross-section of the pertur-
bation density field.

numbers, frequencies, beam angle, and group and phase velocities, are consistent with theory.
Reflections from the top of the domain are observed and found to interfere eventually

with the waves of interest. To exclude the influence of these reflections, a final time is
selected for each wavenumber so there is sufficient time for beams to form, yet not enough
time for reflections to have a noticeable influence. Beam-center velocities in upper beams
are measured from MM5 data and combined with the known background density to obtain
beam-center amplitudes used in dissipation evaluations.

Theoretical, numerical, and practical considerations limit the range of wave numbers
used. Scales consistent with typical MM5 use are adopted so that Ax > Az. As noted by
Leutbecher and Volkert (2000), using a wavelength of two horizontal grid cells would result
in large errors, due to the artificial dissipation, which is designed to suppress such waves.
Therefore wavelengths are selected so that at least four horizontal grid cells represent a wave.
The vertical wavelength must be large enough to be well resolved on the given grid and small
enough so that waves do not span large changes in background density as required by (19)
for the calculation of C.. For the atmosphere used, this is equivalent to an upper bound on
the vertical wavelength of about 6000 m. In practice, the vertical wavelength is kept well
below this limit to maximize the time until reflections from the upper and lower boundaries
interfere with the analysis. For convenience, waves are also selected on the basis of beam
angles and wave periods.

An example of a beam that has developed but has not yet been influenced by boundary
effects is shown as a cross-section of the perturbation density field in Figure 2. Such images
are reviewed at different stages of beam evolution to confirm the flow is two-dimensional,
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Case Horizontal spacing (m) Vertical spacing (m) k, period (min) Cgz/Cgr

1 3000 434 .000265 60 .11
2 3000 217 .000228 60 .13
3 2500 434 .00024 60 .13
4 2700 217 .00027 60 .12
5 3000 434 .000154 120 .053
6 3000 217 .00013 120 .065
7 2500 434 .000174 120 .072
8 2700 217 .000134 120 .064

Table 2: MM5 grid spacing and waves.

not impacted by boundary reflections, and that the waves satisfy the dispersion relation.

The eight MM5 cases are summarized in Table 2. The cases represent waves with either a
60-minute period or with a 120-minute period, simulated by four different grids. The waves
are subject to filtering at the boundary as they enter as well as to numerical dissipation as
they propagate. Therefore, input wave parameters may differ from observed parameters in
the MM5 results. For calculation purposes, two observable wave parameters are taken from
these results to characterize the waves. The wave period observed was consistent with its
input value, so this was used as one parameter. For the other parameter, the horizontal wave
number, k; was used, since it could be measured in a consistent way from case to case, using
images like the one in Figure 2.

The vertical wave number is calculated using the numerical dispersion relation. This was
accomplished using the forward problem that solves for frequency, or period, and decay rate
(IAI), given horizontal and vertical wave number and grid parameters. The procedure was
applied repeatedly to obtain the inverse, that is to obtain the vertical wave number, given
the horizontal wave number and the frequency. The results are shown in Table 3, along with
the decay rate and the slope of the group velocity for each of the eight cases based on the
numerical analysis.

5 Results

The beams produced for the eight cases are evaluated both in the context of dissipation
associated with viscous theory and dissipation expected based on numerical analysis. Viscous
theory provides a gauge for the levels of dissipation observed in the numerical experiments.
Numerical analysis provides a means to predict how numerical dissipation varies with wave
and grid parameters.

For comparison to viscous theory, MM5 beam amplitudes as a function of the beam-
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Case k- P Cgz/Cgx
1 -.00120 .9968 .24
2 -.00106 .9982 .22
3 -.00110 .990 .23
4 -.00250 .9978 .23
5 -.000154 .9996 .086
6 -.00124 .9998 .11
7 -.00161 .9997 .12
8 -.00128 .9998 .11

Table 3: Calculated wave parameters based on numerical analysis

following coordinate ý, are fit to the function

V(o) Po = V(w)Po( -o) (95)

to find the exponent F. The value of F is compared to the the value 2/3 from (22) to
indicate the MM5 level of damping relative to theoretical, viscous damping. An example
of amplitude along a beam is shown in Figure 3 for case 3 (from Table 3), with markers
to indicate MM5 values, a solid curve to show the best-fit function for those values, and
a dashed line to show theory. In this example, MM5 amplitude decreased faster than the
theoretical prediction for a beam in a viscous fluid. The oscillations in the MM5 values are
largely due to the beam center following a staircase pattern through the MM5 grid.

A summary of F values for all eight cases is shown in Figure 4. This shows that for cases
1 - 4, MM5 damping is greater than theoretical viscous damping, while for the remainder
it is less. This suggests that in cases where kXA. > .55, or when fewer than about eleven
horizontal grid cells represent a wave, MM5 numerical dissipation is stronger than what
would be expected due to molecular viscosity, while in cases with more than about eleven
horizontal grid cells per wave, it is weaker. Numerical analysis of dissipation is used to
extend results over a range of waves and grids.

In order to show that numerical dissipation analysis does in fact describe MM5 perfor-
mance, the two are compared. First, the results of the numerical experiment are quantified
in terms of amplification factor, which leads to dissipation value. The experimental ampli-
fication factor is based on fluid speeds observed along a beam, V(C). Values of V(ý) at a
fixed time are interpreted as equivalent local speeds at different times. For example, losses
over the period At, when waves travel from CO to 61, are given by the amplification factor

(Av)N = V( 0)1/•(•l) (96)

where N = (ýj - o)/(CgAt) is the number of large time steps. In this formulation the square
root of density is included because VVrp- is conserved along a compressible, inviscid beam.
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Figure 3: Amplitude along a beam from MM5 at a single time, best fit curve, and theory
based on case 3 in Table 3.
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Figure 4: Beam amplitude loss in terms of F for the eight numerical experiment cases, along
with theoretical value, F = 2/3.
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Figure 5: Comparison of experimental dissipation (De + Ba) with dissipation predicted by
analysis (Da + Ba) for the eight numerical experiment cases.

The amplification factor due to numerical experiment, Ae, is computed as the least squares
fit value for AV to all beam positions from a single, upper beam. Typically, ten to twenty
grid points along a beam are available, depending on grid spacing and other parameters.

Following the form of the dissipation according to analysis given by Equation (94), a
provisional dissipation value based on experiment is In (1 - Ae). This can be written as the
sum of a constant and a term proportional to the order of dissipation, denoted Ds. To unify
the constants added to 'D, and Da, the average difference between the constants is used as
an adjustment term, assuming Da approximates D,. The final form for the experimental
dissipation value is

D + B,, = In (1 - A,) - rinl (1-_AT) - In (1 - A,,), (97)

where the bars indicate averages over the eight cases studied.
The experimental dissipation, De+Ba, is compared to calculations of Da+Ba for the eight

simulated beams in Figure 5, using case numbers from Table 2 as markers. The diagonal line
indicates perfect agreement between analysis and experiment, with the amount of dissipation
increasing toward the top right of the diagonal. Markers are close to the line, indicating
the analysis is an approximate predictor of numerical dissipation. The agreement between
experiment and analysis shown in Figure 5 allows for conclusions that apply beyond the
experimental cases, using the numerical dissipation analysis in a limited range of parameters.

The results on Figure 5 form two clusters: an upper cluster of the short-wave cases
numbered 1 - 4 and the lower cluster of the long-wave cases numbered 5 - 8. Of the two
clusters the short-wave cluster has greater numerical dissipation as indicated by its higher
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Figure 6: Beam amplitude predicted by analysis for a range of horizontal and vertical pa-
rameters.

position on the diagonal. This is consistent with Figure 4 in which the short-wave cases
are shown to contain greater dissipation than the long-wave cases. Given that the short
and long waves differ by a factor of two, while the horizontal grids differ by only about ten
percent, it is not surprising that results are partitioned by wavelength and not horizontal
grid spacing. However, the vertical grid spacings differ by a factor of two, but do not produce
anywhere near the impact of the same factor when applied to horizontal wavelength. For
example, cases 1 and 2, between which vertical grid spacing differs by a factor of two, show
little difference in dissipation in comparison to the dissipation difference between cases 1 and
5, which reflect a factor-of-two difference in horizontal wavelength. The same observation
can be made with other pairings of the data in Figure 5. This confirms the importance of
horizontal grid spacing noted earlier by Leutbecher and Volkert (2000).

Figure 6 shows the predicted amplitude based on the amplification factor determined by
the numerical analysis of Section 3. Figure 6 shows that amplitude increases, or equivalently
dissipation decreases, as either k•Ax or kAz decreases. In other words numerical dissipation
decreases with refined resolution of waves. The dissipation is so much more sensitive to
horizontal refinement than vertical refinement is evidenced by the shape of the surface in
Figure 6. The values (kz, k,) = (0.00036, -0.0033) are used for the figure, with w satisfying
the dispersion relation and AT = 3Ax/1000. Similar results are found for other wavenumber
pairs.
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6 Conclusions

Idealized experiments demonstrate that MM5 simulation of gravity-wave beam propa-
gation is consistent with theoretical predictions of speed and direction. MM5 beams lose
amplitude due to numerical dissipation. Using molecular viscosity as a gauge, the numer-
ical dissipation can be greater or less than viscous dissipation predicted for a compressible
atmosphere, depending on the grid resolution and wave parameters.

As expected, improving the resolution of the wave in either the horizontal or vertical
generally decreases numerical dissipation. Both numerical analysis and numerical experiment
show greater sensitivity to horizontal resolution than vertical, reflecting the influence of the
horizontally-based artificial dissipation.

Due to the relative sensitivity to horizontal spacing, as compared to vertical spacing, the
horizontal spacing alone can be used to approximately predict numerical dissipation. The
amount of numerical dissipation for a wave represented by eleven horizontal grid cells is
approximately equivalent to the amount of dissipation that would be imposed if molecular
viscosity were present. Numerical dissipation is greater than this amount if the wave is
resolved by fewer horizontal cells, and less than this amount if more horizontal resolution is
used.

These results could be used to better understand MM5 results and as a consideration in
selecting grids. This approach establishes a way to perform idealized numerical experiments
that can be applied to other models for model investigation or to compare different models
on the basis of their core calculations as opposed to their parameterizations or boundary
conditions.

Further work is in order to make use of the predictions of numerical analysis in terms of
wave quantities.
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